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Biological context

Suc1-associated neutrophic factor targets (SNTs) are
a family of phosphotyrosine binding (PTB) domain-
containing adapter proteins that transduce activation
of fibroblast growth factor receptors (FGFRs) and
neurotrophin receptors (TRKs) to common signaling
targets, including SHP-2 tyrosine phosphatase and the
Ras/MAPK pathway (Wang et al., 1996; Kouhara
et al., 1997). SNTs have been implicated as a func-
tional link between neurotrophic factor signals and
the changes in gene expression leading to the devel-
opment of sympathetic neurons (Hadari et al., 1998).
Interestingly, the PTB domain of SNT-1 is capable of
interacting with two receptors that share no sequence
homology but are both known to bind to growth
factors involved in neuronal differentiation. Specifi-
cally, the SNT-1 PTB domain can bind to an activated
and tyrosine-phosphorylated NPXpY motif in TRKs
as well as a non-phosphorylated juxtamembrane re-
gion in FGFRs lacking tyrosine or asparagine residues
(Xu et al., 1998; Ong et al., 2000). The ability of
the SNT PTB domain to recognize two different re-
ceptor sequences may play a vital role in regulating
differentiating neurons to undergo an observed devel-
opmental switch in trophic dependence from FGFs to
neurotrophins (Ip et al., 1994; Stemple et al., 1998).

In order to understand the detailed molecular
mechanisms of the SNT-1 PTB domain interactions
with its biological receptors and the functional impli-
cations, we have undertaken NMR structural analysis
of the protein in complex with FGFR1. Here we report

∗To whom correspondence should be addressed. E-mail:
zhoum@inka.mssm.edu

the nearly complete assignments of1H, 13C and15N
resonances for the SNT-1 PTB domain complexed to
a 22-residue peptide derived from the juxtamembrane
region of human FGFR1.

Methods and results

The PTB domain of human SNT-1 (residues 11–
140) was subcloned into a modified bacterial ex-
pression vector pET28b (Novagen) and overexpressed
in E. coli BL21 (DE3) cells as a recombinant pro-
tein with a C-terminal cleavable hexa-histidine tag.
Uniformly 15N- and 15N/13C-labeled proteins were
obtained by growing cells in M9 minimal medium
containing 15NH4Cl with or without 13C6-glucose
(Isotec). Uniformly15N/13C-labeled and fractionally
deuterated protein was prepared using 75%2H2O in
the medium. The protein was expressed mostly in the
soluble fraction and purified by affinity chromatogra-
phy on a nickel-IDA column (Invitrogen). Cleavage of
the His6 tag was achieved by treatment with thrombin,
leaving an additional four-residue LVPR sequence at
the C-terminus from the engineered thrombin site. A
protein refolding procedure was used after thrombin
treatment, followed by ion-exchange chromatogra-
phy to ensure proper folding and high purity. The
FGFR1 peptide was chemically synthesized on a Mil-
liGen 900 peptide synthesizer (Perkin Elmer) using
Fmoc/HBTU chemistry. NMR samples consisted of
the SNT-1 PTB domain/FGFR1 peptide (1/1) of ap-
proximately 0.5 mM in 100 mM phosphate buffer
of pH 6.5, 5 mM DTT-d10 and 0.5 mM EDTA in
H2O/2H2O (9/1) or2H2O. All NMR experiments were
conducted at 30◦C on a Bruker DRX600 or DRX500
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Figure 1. Two-dimensional15N-HSQC spectrum of the15N-labeled SNT-1 PTB domain (residues 11–140) in complex with non-labeled
FGFR1 peptide, collected at pH 6.5 and 30◦C. (A) The full spectrum of the complex. Peaks of side chain NH atoms of Gln and Asn residues
are connected by dashed lines. (B) Expansion of the region enclosed by a dashed box in Figure 1A.

spectrometer equipped with four RF channels and
a triple-resonance probe with triple-axis pulsed field
gradients. NMR data were processed using the NMR-
Pipe package (Delaglio et al., 1995) and analyzed
with the NMRView Program (Johnson and Blevins,
1994). Sequence-specific backbone and side-chain
resonance assignments were made using deuterium-
decoupled triple-resonance HNCA, HN(CO)CA, HN-
CACB, HN(CO)CACB and (H)C(CO)NH-TOCSY
spectra (Yamazaki et al., 1994) collected with a
uniformly 15N/13C-labeled and fractionally deuter-
ated PTB domain in complex with a non-labeled
FGFR1 peptide. The remaining side-chain resonances
were assigned from a 3D HCCH-TOCSY experi-
ment recorded from a fully protonated and uniformly
15N/13C-labeled PTB domain in complex with non-
labeled FGFR1.

Extent of assignments and data deposition

The full 15N-HSQC spectrum for the15N-labeled
protein/non-labeled peptide complex is shown in Fig-
ure 1A and the region enclosed by a dashed box
is expanded in Figure 1B. Complete backbone as-
signments were obtained for>98% of the residues
comprising the structurally ordered regions of the pro-
tein. Side chain1H and13C resonances were assigned
for >95% of protein residues in these regions. In
addition, 1H resonance assignments were made for
>90% of the peptide residues. A complete table of
1H, 15N and13C chemical shift assignments for both

the SNT-1 PTB domain and the FGFR1 peptide in the
complex has been deposited in the BioMagResBank
Database (http://www.bmrb.wisc.edu)under accession
number 4790.
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